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Abstract--The effective viscosity/~ of a dilute suspension of neutrally buoyant, polydisperse, rigid spheres 
of macroscopic size (characteristic radius = c) randomly distributed throughout a Newtonian liquid of 
viscosity ~ is derived theoretically. This result is obtained by two closely related, but nevertheless 
independent, schemes: (i) from the properties of the fundamental Stokeslet solution viewed at the 
suspension scale; and (ii) from the settling velocity U of a single, nonneutrally buoyant falling ball 
(radius = b) instantaneously (and quasistatically) settling through the unbounded suspension. To terms 
of leading order, both yield the classical Einstein result,/~ =/~0(1 + ~q~), apparently independently of the 
ratio of c/b, as well as of the size distribution of the suspended spheres. Also studied are wall effects for 
the special case where the falling ball is instantaneously situated at the center of a hollow sphere 
(radius = to) that bounds the suspension externally. For circumstances where b/ro<< 1 and c/ro<< 1, it is 
demonstrated that classical falling-ball wall effects for a homogeneous Newtonian fluid of viscosity 
/~ = #0(1 + ~ )  apply equally well to the present suspension case. This example strongly suggests that the 
apparent viscosity of dilute suspensions can be experimentally measured via falling-ball rheometry using 
the well-known (circular cylindrical) wall-effect corrections developed for Newtonian liquids. This 
observation is in agreement with existing experimental data. 

Key Words: suspension viscosity, Stokes law for suspensions, falling-ball suspension rheometry, viscosity 
of suspensions, rheology of suspensions 

1. I N T R O D U C T I O N  

Consider  a viscous, incompressible  Newton ian  fluid in which neutrally buoyan t  spheres of  
macroscop ic  size are suspended r andomly  at infrequent  intervals. Einstein (1906, 1911) derived his 
wel l -known fo rmula  for  the apparen t  viscosity of  such a suspension by subjecting the suspension 
to an e longat ional  or  i r rota t ional  flow field. Subsequently,  Burgers (1939) obta ined an identical 
result for  simple shear flow between parallel plates. In this paper ,  we initially consider a suspension 
that  is macroscopica l ly  at rest except for  being per turbed by a steady point  force or  Stokeslet  
[after H a n c o c k  (1953)]. This  singularity is asymptot ica l ly  equivalent  in its far-field behavior  to a 
sphere an imated  by an externally imposed  body  force (e.g. a ball settling under  the influence of  
gravity).  Subsequently,  we consider finite-size falling balls, polydisperse suspensions and bounded  
suspensions.  

When  the suspension is dilute, so that  the suspended spheres do not  interact  hydrodynamical ly ,  
only two-body  interact ions between the settling sphere and a single suspended sphere need be 
considered.  Exact  solutions for  such unequal-size, two-sphere  p rob lems  exist as both  bispherical 
coord ina te  expansions  (O'Neil l  & M a j u m d a r  1970; Zinchencko 1980; Happe l  & Brenner  1983) and 
Tay lo r  series expansions  (Jeffrey & Onishi 1984). These solutions have been used to determine 
self-diffusion coefficients for  monodisperse  (Anderson & Reed 1976) and polydisperse (Batchelor  
1976) suspensions of  neutrally buoyan t  Brownian spheres, as well as to analyze hydrodynamic  
interact ions in polydisperse sedimenting suspensions of  spheres in which either Brownian or 
hyd rodynamic  forces are appreciable  (Batchelor  1982; Batchelor  & Wen 1982). As our  analysis will 
require only asymptot ic ,  ra ther  than exact, knowledge of  the detailed velocity and pressure fields 
generated by the moving  ball, we shall not  directly avail ourselves of  these existing two sphere 
results but  ra ther  will use the " m e t h o d  of  reflections" (Happe l  & Brenner  1983). Use of  the me thod  
of  reflections allows us to determine the per turba t ions  to the velocity and pressure fields created 
by a Stokeslet  arising f rom the presence o f  the suspended spheres and the bounding  wall. 
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Section 2, which follows, formulates the governing equations and boundary conditions, in 
addition to providing an overview of the analytical methods employed in their solution. Section 
3 furnishes the velocity and pressure fields generated by a Stokeslet in the presences of a single 
suspended sphere, and then effects the integration of these results over all allowable positions of 
the center(s) of the suspended sphere(s) to obtain the cumulative effect arising from the presence 
of all of the suspended spheres (in a dilute suspension). Section 3 also formally demonstrates that 
these results are independent of the degree of polydispersivity of the suspended spheres provided 
that the size distribution is uniform throughout the suspension. Next, section 4 extends the 
preceding analysis to the physically important case of a finite-size sphere moving in a (spherically) 
bounded suspension. Section 5 addresses the question of a relative slip velocity at the suspension 
scale. The final section summarizes our results. 

2. COMPUTATIONAL OVERVIEW 

This study focuses on a dilute suspension of neutrally buoyant, randomly distributed spheres in 
a viscous Newtonian liquid under conditions such that only hydrodynamic forces are sensible. Our 
objectives are initially to determine the suspension-scale velocity and pressure fields produced by 
a point force or Stokeslet in this dilute suspension, and subsequently to use these data to determine 
the analog of the Stokes law drag force experienced by a finite-size sphere moving through a dilute 
suspension, both for unbounded and bounded suspensions. The inclusion of external boundaries 
permits quantitative assessment of wall effects upon falling-ball rheometry in the case of 
suspensions. 

2.1. Stokeslet 

As in figure 1, let the Stokeslet be characterized by the vector force F. All velocities will be 
referred to a stationary coordinate system whose origin O concides with the Stokeslet (figure 2). 
In the latter figure, r = OP denotes the position vector of an arbitrary point P relative to O. 
Additionally, r = L r I is the magnitude of r, whereas [ = r/r constitutes a unit vector in the direction 
of r. 

The homogeneous suspending fluid is taken to be incompressible and Newtonain (viscosity --/~0). 
Accordingly, the fluid satisfies the continuity, 

V.v=O, [1] 

and the quasistatic, linearized Navier-Stokes equations, 

Vp =/.toV2v + J, [2] 

r ' ~  2c " -~  neutrally 
* buoyant 

_ _.,)sphere 

Stok--\/F 
O 

O 
Figure 1. A point force or Stokeslet (origin O) of strength F in a dilute suspension of neutrally buoyant 

spheres (radii c) that are randomly distributed throughout a homogeneous Newtonian fluid. 
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with J the external force per unit volume. The latter equation may be written alternatively as 

V ' n  = - J ,  [3] 
wherein 

n = - p I  +/~0[Vv + (Vv)t], [4] 

with x the stress tensor, I the dyadic idemfactor and (Vv)t the transpose of Vv. 
Initially, the suspension is taken to be unbounded. Accordingly, we seek a solution of Stokes 

equations [1] and [2] for a Stokeslet, 

J = r~ (r), [5] 

and satisfying the following boundary conditions in an otherwise quiescent suspension: 

v ~ 0 ,  p~p® as r - ~ ,  [6a,b] 

fs dS',  =O, fs r X (ds.,O=O Vn, [7a,b] 

with ~(r) designating the Dirac delta function, Po~ the uniform pressure at an infinite distance from 
the Stokeslet, ds a directed element of surface area and S~ ") (n = l, 2, 3 , . . . )  the surface of the nth 
suspended sphere. Conditions [7a,b] embody the requirements that every suspended sphere be force 
and torque (or couple) free owing to its neutral buoyancy. 

Linearity of the equations of motion and boundary conditions permits the boundary-value 
problem to be decomposed into a sequence of separate problems: 

v = v' + V', p=p'+ff" ,  [8a,b] 

where each of the individual fields, defined below, satifies Stokes equations [1] and [2] (to which, 
we may imagine, primed and double-primed superscripts are added as needed). The primed solution 
corresponds to the homogeneous fluid Stokeslet, whereas the double-primed solution arises from 
the perturbation to the primed solution caused by the suspended spheres. 

Using the method of reflections, (V', #") can be determined to terms of leading order as 

V' ~ ~ v", ,b" ~ ~ p", [9a,b] 
n n 

where (v",p") is the "reflection" of the Stokeslet field v' from a single sphere (of radius c), and 
the sum indicated by n is taken over all spheres in the suspension. The above supposes that 
hydrodynamic interactions among the suspended spheres are negligible. Subequently (cf. [33a,b]), 
these sums are replaced by comparable integrations. 

A solution of Stokes equations satisfying the boundary conditions [6a,b] and [7a,b], correct to 
terms of first order in the sphere-Stokeslet and sphere-sphere separation distances, may therefore 
be obtained via the following algorithm: consider the field pair (v' ,p') generated by a Stokeslet 
in an unbounded fluid in which no suspended spheres are present. This corresponds to the choice 
J ' =  F3(r) in [2] with conditions [7a,b] absent. This well-known Stokeslet solution is (Chwang & 
Wu 1975) 

1 f ' F  
v' = - -  (I + ii).F, p '  = [10a,b] 8~#0r ~ + Po~. 

However, if a (single) suspended sphere is present at an arbitrary point R ( figure 2), this solution 
violates the condition that the sphere moves as a rigid body satisfying a no-slip condition on its 
surface. Another solution (v", p ") is sought such that when added to (v', p ' )  the resultant fields also 
satisfy conditions [7a,b] for a force- and couple-free sphere. Therefore, each of the double-primed 
fields in [8] must satisfy Stokes equations [1] and [2] together with the following conditions: 

J" =0,  [11] 

v "~0 ,  p"-,.O as I r - R l ~  [12a,b] 

v " = - ~ a ' ( r - R )  on So, [13] 

MF 16/4--C 
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Figure 2. Stokeslet in an unbounded fluid with a single suspended sphere present. The center of the 
neutrally buoyant sphere is situated at the point whose position vector relative to the Stokeslet at O is 
R. Point P is an arbitrary point in the fluid whose location is defined by the position vector r relative 
to the origin O, and by q relative to the center of  the suspended sphere. Observe that q = r - R, and hence 

that q2 = r 2 + R 2 _ 2R'r .  

with R the vector drawn from the Stokeslet to the center of the suspended sphere (figure 2) and 
7R =½[VV'+ (VV')t]e the rate of strain tensor created by the Stokeslet and evaluated at the 
homogeneous fluid position R currently occupied by the sphere center (cf. [29]). The detailed 
derivation of the boundary condition [13] from Faxen's law will be given in section 3, with the field 
pair (v", p") corresponding to the "reflection" of the undisturbed Stokeslet field from the neutrally 
buoyant sphere; i.e. the resulting velocity field v ' +  v" satisfies the condition that the suspended 
sphere be force free and couple free, and possess a rigid, impermeable, no-slip surface. 

Next, we determine the cumulative effect of all the suspended spheres upon the velocity and 
pressure fields in the suspension. The sum of fields reflected from individual particles (shown 
schematically in figure 3) is determined by integrating the reflected velocity and pressure fields 
(weighted with the local number density of spheres) over all possible locations of the sphere centers. 

Stokeslet ~ ,  F 

(a) 

neutrally 
bu.oyant 

"-- spnere 

P 

(b) 

• 

(e) 

Figure 3. Symbolic representation of  the computational algorithm. In (a) the far-field approximation to 
a moving sphere on which an external force F acts is represented by a Stokeslet. In (b) the solution is 
determined, correct to terms of  first order, for the Stokeslet velocity field reflected offone of  the suspended 
spheres. The cumulative effect at P produced by all the suspended spheres is determined in (c) by 
integrating the contribution of the suspended sphere in (b) (weighted with the local number density of 
suspended spheres) over all possible positions of  the suspended sphere center. In (d) the collective 
suspension behavior is replaced by a hypothetical, homogeneous Newtonian liquid (shown shaded) 

possessing an apparent suspension viscosity, p. 
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As will be shown in section 3, to terms of dominant order the velocity and pressure fields [8a,b] 
in the suspension (in the absence of any external boundaries) are given by the expressions 

1 E-F 
v=~-~n/~ r (I+EE)'F, p =4--~5r2+p~, [14a,b] 

wherein 

p =/~0(1 + ~b). [15] 

Comparison of [14a,b] with their homogeneous fluid counterparts [10a,b] reveals that a dilute 
suspension of spheres behaves macroscopically as a Newtonian fluid continuum with an apparent 
viscosity p given by [15]. It will be demonstrated in section 3 that this result is independent of the 
size distribution of radii of the suspended spheres, and therefore holds for both monodisperse and 
polydisperse suspensions. 

2.2. Finite-size sphere in a bounded suspension 
The original Stokeslet [10a,b] may be regarded (Happel & Brenner 1983) as representing the 

far-field effect of the disturbance caused by a (nonneutrally buoyant) sphere settling under the 
influence of a net body force F through an unbounded suspending liquid. If instead the sphere now 
settles through a suspension, rather than a homogeneous fluid, it will suffer a reduction in its settling 
velocity owing to the presence of the suspended spheres (as well as any walls in a bounded 
suspension). In the preceding section we described how the sum of the Stokeslet velocity field v' 
and reflected velocity field v" give the correct leading-order velocity on the surface of a suspended 
sphere. However, this sum fails to produce a zero velocity at the container walls, as it must if the 
no-slip boundary condition on the solid wall is to be satisfied. Corrections for the presence of the 
wall are thus made by adding appropriate reflected fields such that the resulting velocity at the wall 
is zero. These corrections, (v w, vWP), are calculated in section 4. (Note that by satisfying the 
boundary condition on the wall, the boundary conditions imposed upon the suspended spheres and 
settling sphere are no longer exactly satisfied, although they are satisfied to the order of the 
approximation--as is always the case when using the method of reflections.) 

Therefore, for a bounded suspension the method of reflections expresses the leading-order 
contribution to the velocity field v T as 

v v = v' + ~" + v w + ~wp, [16] 

where v w and ~wP are, respectively, the wall-effect velocity corrections due to the Stokeslet (v') 
interacting with the wall and the suspended spheres (~') interacting with the wall. These interactions 
are shown schematically in figure 4. While each of the Stokes velocity fields appearing in [16] will 
be calculated for the effect of the suspended spheres and bounding walls upon the (finite-size) 
settling sphere, it is rather the drag force exerted upon the latter that represents the quantity of 
ultimate physical interest. 

An extension of Faxen's law (Faxen 1927; Brenner 1964b) may be used to determine the drag 
force F* experienced by a finite-size sphere (radius = b) immersed in an arbitrary Stokes velocity 
field v* that vanishes at infinity: 

F* = - ~#0 b f v* I r = b d2L [1 7] 
. )S  I 

Here, dZE is a scalar element of surface area on a unit sphere, whereas St denotes integration over 
a unit sphere. For a bounded suspension, Faxen's law can be expressed in the form (Happel & 
Brenner 1983) 

F* = -3#bK f v*lr=bdZE [18] 
d s  ! 

to account for both the increased suspension viscosity /~ of the unbounded medium and the 
increased drag force K (relative to the unbounded fluid) on the settling sphere arising from the 
presence of the bounding walls. In both of the above equations, v* [, = b does not necessarily describe 
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Figure 4. Symbolic representation of quasistatic wall effects for a falling ball of radius b instantaneously 
situated at the center of a hollow spherical shell of radius r o .  In (a) the fluid motion at an arbitrary point 
P in the fluid due to the presence of a Stokeslet is determined, The reflection of the Stokeslet velocity field 
from the containing wall is shown in (b). In (c) the fluid motion at P due to the perturbation caused by 
a suspended sphere is found; (d) represents the perturbation at the point P due to the indirect interaction 
of the Stokeslet with the wall by perturbing the suspended sphere. In (c) the cumulative result arising from 
all of the suspended spheres can be obtained by determining the effect on a single suspended sphere, and 
subsequently integrating over all possible sphere-center positions weighted with the local number density 
of the suspended spheres. The final result in (d) can be obtained by reflecting the integrated results of (c) 

from the containing wall. 

a rigid-body motion; nevertheless, these formulas do indeed properly furnish the force exerted by 
the fluid upon the interior contents of the spherical domain of radius b. 

Equation [18] may be employed to calculate the total drag force F T acting upon the settling sphere 
from knowledge of v T. Alternatively, the linearity of [18] permits the total drag force upon the 
moving sphere to be expressed as the sum: 

F x = F' + F" + F w + r wP, [19] 

wherein each of the respective terms appearing therein may be derived from [18] by replacing v* 
with the comparably superscripted velocity field appearing in [16]. 

The total drag force F +, which represents the quasistatic force experienced by a sphere (radius 
b) moving through a dilute suspension at the instant that its center is positioned at the center of 
a spherical container (radius ro), will be shown (cf. [18] and [65]) to possess the form 

) #0 - 5 ~  1 - ~  + O  ~b 2 ,0  bz . [20] 

Since the drag force must be balanced by the body force F+= - F ,  the above equation gives 

( K =  1 4ro] 
and 

The additional drag coefficient K is the first-order, wall-correction factor (Happel & Brenner 1983) 
in a homogeneous fluid for the concentric-sphere geometry described above, and the suspension 
viscosity is that predicted from the unbounded suspension analysis. 
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To terms of first order, the presence of the walls therefore affects the bali's motion through the 
suspension exactly as if it were moving through a homogeneous Newtonian fluid of viscosity # given 
by Einstein's law [15]. Going beyond the elementary concentric spherical-enclosure case, our 
analysis strongly suggests that the apparent viscosity of dilute suspensions can be measured via 
falling-ball rheometry using comparable wall corrections developed for homogeneous Newtonian 
liquids, e.g. for circular cylindrical walls (Happel & Brenner 1983). This tentative theoretical 
conclusion is strongly supported by existing experimental evidence (Mondy et al. 1986). 

The following sections detail the calculations leading to the preceding results. We begin with the 
determination of the suspension-scale velocity and pressure fields produced by a Stokeslet in an 
externally unbounded dilute suspension. 

3. STOKESLET IN A DILUTE, UNBOUNDED SUSPENSION 

The velocity and pressure fields (v', p ' )  associated with a Stokeslet in an unbounded homoge- 
neous fluid of viscosity/~0 are given by [10a,b]. To derive the perturbation (v", p") created by the 
presence of a single suspended sphere, we need to establish the boundary condition [13] governing 
the reflected velocity and pressure fields for a rigid, force- and couple-free sphere. 

The neutrally buoyant sphere is animated solely by the point force. Let U and r ,  respectively, 
be the translational velocity of the center of this sphere and its angular velocity. These velocities 
are to be determined by the requirements [7a,b] that the suspended sphere be both force and couple 
free. If we consider this rigid sphere to be immersed in a fluid whose undisturbed motion is given 
by the Stokeslet velocity field v', Faxen's law together with the analogous torque equation (Happel 
& Brenner 1983) reduce to the respective forms 

F = 6n#0 c(v~ - U) + rqa 0 c 3(V2v' )R [21] 

and 

T = 8n/t0c3(oJ~ - fl), [22] 

wherein F = 0 and T = 0, and in which 

1 A 
v~ = - -  (I + R R ) .  F [231 

8n/aoR 

and 

1 (F x R) [24] 
o~ = 81t/aoR3 

are, respectively, the Stokeslet velocity vector v' and angular velocity pseudovector oJ' = ½V x v', 
each evaluated at the fluid point r = R currently occupied by the sphere center. From [10a] the V=v[~ 
term in [21] can be shown to be of O(c/R) 2 in comparison with the v~ term. Therefore, [21] and 
[22] respectively yield for the translational and angular velocities of the suspended sphere, 

and 

o = ] [25] 

= oJ~,. [26] 

Thus, the requirements [7a,b] that the suspended sphere be force and couple free will be satisfied 
to terms of lowest order in c/R if the velocity v(r) on the surface of the suspended sphere whose 
center is located at R is chosen as 

v(r) = v~ + oJ~ x (r - R). [271 

The latter constitutes a rigid-body motion for a sphere translating and rotating with the respective 
translational and angular velocities [23] and [24] of the homogeneous suspending fluid Stokeslet 
field [10a] evaluated at the sphere's center. 
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A Taylor series expansion of the homogeneous Stokeslet velocity field [10a] about the position 
R = R R (see figure 2) of  the sphere center yields, for I r - R I / I R I << 1, 

/ :~a t / 
V r ~ ,  V R "+" 0~) R X (r -- R) + ~;R'(r - R), [28] 

in which v~ and col are given by [23] and [24], and 

1 
~;a = 8rc#0RZ (I -- 31~R)(R "F). [29] 

The latter represents the rate-of-strain dyadic ~; = ½(Vv' + Vv't)evaluated at the point r = R. 
The boundary conditions imposed upon v" are such that when the latter is added to v' the sum 

satisfies [27] on So, and, hence, satisfies the conditions of neutral buoyancy for a solid impenetrable 
sphere of radius c. Comparison of [27] with [28] reveals that satisfying [7a,b] requires that the 
boundary condition imposed at the surface of the suspended sphere be that cited in [13]. 

The solution (v", p")  satisfying Stokes equations [1] and [2] and the boundary conditions [11]-[13] 
is readily obtained using the general scheme of Brenner (1964a) for solving boundary-value 
problems on spherical surfaces in the region exterior to a sphere. This yields 

v"=Vq~-3+q~03,  P " = P - 3 ,  [30a,b] 

where q = r - R (figure 2) is the position vector originating at the center of  the suspended sphere, 
and P-3 and 4_ 3 are the respective solid spherical harmonics 

- 5#0C3~R :qq --CS~s:qq 
P-3 = qS , 4 ' -3= 2q5 [31a,b] 

The first and second terms of [30a] are respectively of orders (1 /q) (c /q )  s and (1 /q) (c /q )  3. For 
c/q << 1, [30a] thus reduces to 

v"~  P-3 -5c3qqq:~R [32] 
q ~ o  --- 2q 5 

Equations [30b], [31a] and [32] respectively represent the reflected pressure and velocity fields at 
the point P (defined by the position vector r as shown in figure 2) arising from the presence of 
a single suspended sphere whose center is situated at R. The cumulative effect arising from a / /o f  
the suspended spheres, obtained by effecting the sum in [8a,b], is given by 

~"(r) = fv"(r ,  R)n(R)d3R, p"(r) = .fp"(r, R)n(R)d3R, [33a,b] 

where the integration is over all positions R of the sphere centers, and in which n = 3~b(R)/4ztc 3, 
with ~b(R) the local volume fraction of suspended spheres at R. [The unnormalized probability that 
the center of a sphere lies in the volume element d3R centered at R is n(R) d3R.] For a random 
distribution of sphere centers [i.e. ~b(R) constant] this yields upon integration, 

~"(r) - 15~ ~'qqq:~R d3R [34] 

and 

15.0  ['qq:f  d3 R [35] 
/~"(r) = -- 4----~- J - - ~  " 

Details of the latter velocity integration are relegated to the appendix, the final result being 

~,,= 5~ F ' { I [ 1 - 2 r + 4  , f [1  2 r 3 , 
16n#0~ ro 5 ( ~ ) 3 1 +  - 5 ( ~ o ) ] }  [36] 

where r o is an arbitrary upper bound on the integration. (Integration of the pressure field [35] is 
performed in the next subsection.) As ro ~ oo, [36] reduces to 

~" = 5-----~ F.(I  + ff). [37] 
16n#o r 
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Using the preceding results, [8a] yields 

1 
v = - -  (1 - ~$)(I + ff)-F + O($ : )  [381 

8hi, or 

for the suspension-scale velocity field at r. Using Einstein's relation [15], the above may be written 
correctly to first order in ~b in precisely the same form as that for the homogeneous fluid Stokeslet 
[10a], but now for a fluid of  viscosity p. 

3.1. Pressure-field renormalization 
Whereas the velocity [34] can be integrated straightforwardly, the pressure integral [35] 

constitutes a nonconvergent integral, requiring special analysis. In particular, a q-3 singularity 
appears, leading to a nonunique value for the latter integral. Hence, in [35] a spherical-polar 
integration scheme centered about  the point P yields if" = 0, whereas a comparable integration 
centered about  the Stokeslet O yields a nonzero value for/~"! 

Nonconvergent integrals arise in a number of  physical situations (Hinch 1977). Frequently, the 
integrals lead to infinite values as the limits of integration approach infinity. Renormalization 
methods reformulate the problem such that nonconvergent integrals become integrals with unique, 
finite values (Batchelor 1972; O'Brien 1979; Lu & Kim 1990). These methods may also be used 
to reformulate integrals like [35] which appears to give nonunique finite values that depend on the 
coordinate system used to evaluate the integral (Jeffrey 1977). While in practice all such methods 
necessary give the same results, Hinch's (1977) second renormalization scheme was chosen to 
evaluate [35]. 

In applying the scheme, [2] is first rewritten with the boundary condition [7a] represented as a 
distribution of  singular force terms acting on the suspended spheres, such that here 

J=F6(r)-fn(R)(fq ~ 6(r' - r)rt ( r ' ) .ds ' )  d3R, [39] 

with ds' a directed element of  surface area on a suspended sphere centered at R. Following Hinch 
(1977), a term equal to a continuous distribution of  dipoles, modeling the far-field effects of  the 
suspended spheres, is added to both sides of [3], thereby obtaining 

-- Vp + #oV2v - f 5#o~b); a" V a 6 (r -- R) d3R 

Observe that Va'~l~ l 2 = 5Vav and 

- f 5#0~R" VR6 (r - R) 
. /  

=fln(R)(Xq=ct~(r '-r)l t(r ') 'ds '  ) 

- 5#o~b~l~" Va 6 (r - R ) ]  daR - F6 (r). [4o1 

? 
d3R = J 5 ~ b 6  (r - R)Va" ~R dSR 

5 1  V2 v = i q~P0 , 

where VR is the gradient with respect to R (r being held constant). Hence, the extra term appearing 
on the 1.h.s. of  [40] acts as an effective increase in the homogeneous fluid viscosity for the velocity 
and pressure equations. This accords with intuition, since distant suspended spheres would appear 
to influence one another (i.e. hydrodynamically interact) not through the agency of  the homogen- 
eous fluid viscosity, but rather through that of  the effective suspension viscosity. Incorporation of 
this effect allows [35] to be expressed in terms of convergent integrals. 

In parallel with [8a,b], we now decompose the velocity field such that 

V = V N + ~ , '  P = P'N + PN,-" [41a,b] 

where (v~v, P~v) arise from a Stokeslet in a fluid of  viscosity #0(1 + 5~b), and ( ~ ,  ~ )  constitute the 
reflected renormalized fields. 
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Use of the homogeneous Newtonian fluid Green's functions in the first term on the r.h.s, of 
[40] furnishes the solution of the additional reflected pressure f ie ld /~  (Chwang & Wu 1975) 
explicitly as 

-" = f l  p ( ~ ]  d3q"// [42] iON "n + 5#0tk);a: VRk~n/~0q 

In consequence of the relation q = r -  R, observe that VR(q/q 3) = - - ( I -  3¢1¢!)/q 3. This identity in 
conjunction with [30b] and [31a] yields 

- 5~4~B : (I -- 3~)  4---~q 3 d q - 0 .  [43] 

The latter equality follows from the identity I :~R- V R'v"= 0, which causes the above integrand 
to vanish. Therefore, the integral will also vanish irrespective of either the bounds delimiting the 
integration domain or the coordinate system used in effecting the integration. The vanishing of the 
above integral shows that the average additional or reflected pressure field created at any point 
R by the presence of the suspended spheres (beyond that modeled by the continuous distribution 
of dipoles) is zero to the order of the approximation. 

Similarly, using the appropriate Green's function in the first term on the r.h.s, of [40], the 
additional velocity field may be obtained explicitly as 

~ =  v"n + 5.0Ors: R 

Note that 
VR[q-'(I +qq)l = q-2[qLJ - -  I,~ - -  [ . J q +  3~¢1], 

[44] 

[45] 

with [.J ~- I the dyadic idemfactor [in the notation of Chapman & Cowling (1970)], used to relate 
nonconsecutive indices, such that if C = ~ then C~k = 6ikaj. Since ~R is symmetric and traceless, 
only the last term in [45] contributes to [44]. In conjunction with [32], [44] thus becomes 

v ~ = f [  15q~qqq:?R+°5--~-z3qqq:?Rl d 3 q = 0 , 8 1 t  q5 ~ q  [46] 

whence the average additional or reflected velocity field produced by the suspended spheres is 
identically zero at every point owing to the vanishing of the above integrand. 

Equations [45] and [46] both derive from application of the Green's function to only the first 
term on the r.h.s, of [40]. Accordingly, the first term makes no net contribution to [40], whence 
the latter may be rewritten as 

- V p  + #0(1 + ~b)V2v = -F6(r) .  [47] 

This is of precisely the same form as [2] except that #0 has been replaced by #o(1 + ~b) = g. From 
[10b], the net change in the homogeneous fluid Stokeslet pressure field is zero since p'  is independent 
of the viscosity. From [10a], to order ~b the net change in the velocity field is that given by [37]. 
Consequently, the assumed field necessary to secure convergence of the pressure integral is identical 
to that derived by direct integration of [34]. 

In combination, [8a], [10a] and [37] for the velocity field, together with [8b], [10b] and [45] for 
the pressure field, yield 

f ' F  
v = (I + f~)'F, p = 4--~SrZ + p~, [48a,b] 

with/~ given by [15]. The latter equations reveal that in the presence of a point force, a dilute 
unbounded suspension behaves on average as a hypothetical, homogeneous, Newtonian liquid 
characterized by the Einstein scalar viscosity [15], at least in regard to the Stokeslet field engendered 
by the action of this point force. In the next subsection this result is shown to be independent of 
the distribution of radii of the suspended spheres in the case of polydisperse suspensions. 

Equation [15] for the suspension viscosity, as defined by the suspension-scale Stokeslet field, is 
independent of the relative radii b/c of the suspended spheres to the falling sphere, at least to the 
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first order in $. This conclusion is supported by (limited) experimental results (Graham et al. 1987) 
for 1 < b/c < 6 and ~b = 0.05. [While data also exist for larger values of ~b (Mondy et al. 1986; 
Milliken et al. 1989) these more concentrated suspensions fail to fulfill the criterion of diluteness, 
implicit in our analysis.] 

3.2. Polydisperse suspensions 
Consider a suspension in which the suspended spheres, though still uniformly distributed 

throughout the suspension, now possess at each point a distribution of radii rather than being 
monodisperse as was the case previously. This distribution is assumed to be independent of position 
R. Let the frequency distribution of radii of the suspended spheres be given by f(c), whence by 
definition, the number dN of spheres with radii lying between c and c + dc is dN = f ( c )  dc. We 
note that 

f f (c)  de N, 

where N is the total number of spheres of all sizes, and wherein the integration domain extends 
from c = 0  to oo. With V T the total suspension volume, the quantity d$(c)=(4nc3/3VT)dN 
represents the volume fraction of spheres possessing radii between c and c + dc. Accordingly, the 
total volume fraction $ of spheres at each point of the suspension is 

fc 47t~c 
4~ = dq~(c) = ~ f(c)c 3 dc. [49] 

As the total number density of spheres in n = N/VT, this makes 

3 i" d (c) 
n =4-'~n L c3 [50] 

Referring to [33a,b], the total reflected velocity and pressure fields for spheres of all sizes are 
respectively given by the expressions 

V'= - 8---~15 f f ,  ---Tqqq:~R d~b d3R [51] 

and 

if,,= _ 15/2047~ qq:~;R dd~q5 ~. d3R. [52] 

As d~b (c) is independent of R, [51] and [52] become identical to [34] and [35], respectively, upon 
effecting the ~b integration. Consequently, the suspension-scale Stokeslet fields [8a,b] are indepen- 
dent of the distribution of particle sizes, being dependent upon only the overall volume fraction 

of suspended spheres. This particle-size independence property arises as a consequence of having 
neglected hydrodynamic interactions among the suspended spheres. Therefore, in contrast with 
concentrated suspensions, whose viscosity depends upon the particle-size distribution (e.g. Chong 
et al. 1971), a dilute polydisperse suspension possesses the same viscosity [15] as does a 
monodisperse suspension with the same ~b. 

4. WALL EFFECTS 

As is well-known (Happel & Brenner 1983), wall effects upon the motion of a sphere through 
a homogeneous Newtonian fluid can be appreciable. In this section we examine the comparable 
situation for the case of a dilute suspension rather than a homogeneous fluid. Though the most 
important case occurring in practice is that of a circular cylindrical boundary, the requisite algebra 
is daunting (Happel & Brenner 1983), especially so in the suspension case. Accordingly, in the 
interests of simplicity, attention will be confined to the illustrative case where the outer boundary 
is spherical rather than cylindrical. Moreover, the calculations are further simplified by restricting 
attention to the case where the falling ball is (instantaneously) at the center of the bounding 
spherical envelope. In this context it will be shown that the effect of the wall upon the falling ball 
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is the same for the suspension as it is for the usual homogeneous fluid case. This strongly suggests 
that the same conclusion would apply for the circular cylindrical boundary case, although a formal 
analysis of the latter would be required for an unequivocal demonstration. 

In this section we calculate the quasistatic, low-Reynolds number wall effect experienced by a 
settling sphere of radius b instantaneously situated at the center of a hollow sphere of radius ro 
filled with a dilute suspension of identical, randomly distributed spheres of radii c. (As in the 
preceding section, the results may be shown to apply equally well to a distribution of suspended 
sphere sizes provided that the same distribution of radii applies at each point of the suspension.) 
The analysis is confined to the case where b/ro<< 1 and C/ro<< 1. 

The total drag force F T on the falling ball can be calculated via [19]. Each of the terms appearing 
therein will be calculated for a fluid possessing an arbitrary suspension viscosity/~, and enclosed 
within a concentric spherical boundary, which imposes an additional drag factor of K. As the 
corrections to the velocity field have the net effect of reducing the unbounded suspending fluid 
settling velocity field v' to that of the bounded suspension settling velocity field v T (cf. [16]), these 
velocity field corrections will reduce the drag force F' to the total drag force F T. At that point the 
a pr ior i  assumption of the existence of an effective suspension viscosity #, modified by an additional 
wall drag factor K, can be confirmed a poster ior i  by determining their respective values. 

As was done for the suspension velocity field v in the previous section, the drag force F' due 
to the sphere settling in the unbounded suspending fluid will be calculated first. Thus, substitution 
of [10a] into [18] yields, upon integration, 

F' = - ~ KF. [53] 
#0 

The correction F" to the drag force arising from the presence of'the suspended spheres can be 
established by substituting the perturbed velocity field ~", given by [36], into [18]. Upon ignoring 
the higher-order, r o  3 , t e r m s  in the perturbed velocity expression [36], the additional force becomes¢ 

161t#0b] J ,L \ 

=-~4,  1 -  K F + O  . [54] 
2 ro /#o  

Next we calculate the wall correction F w due to the ball setting in the homogeneous fluid. In 
the absence of the wall, the dominant term in the far field is the Stokeslet velocity field v' [10a]. 
Therefore, we seek the reflection (v w, pW) of this field from the wall. This field pair is governed 
by Stokes equations [1] and [2] subject to the following boundary conditions: 

jw = 0, [55] 

(vW, pW)finite for 0 ~< r < ro [56] 

1 
vW=--v'lr=r, = 8rt#0roF'(l+~f) at r = r o .  [57] 

This boundary-value problem may be solved by techniques d~veloped by Brenner (1981) and 
discussed in detail by Brenner et al. (1989). The technique evolves dividing the equations into two 
parts, the dependence on the driving force F and the bounding geometry. Since the equations are 
linear, (vW, p w) can be expressed as (F'VW, F'IIW), reducing the problem to solving for the 
geometric dependence of (V w, llW). The result obtained by this scheme is 

v w 1 F . { I [ 3 - 2 ( r y 3  ( r )  2"  ̂} = - - -  + 2 r r  [ 5 8 ]  
8 n #or o \ r o ,/ ~o ' 

tThat the error estimate in [54] is O(b/ro)  2 rather than O(b/ro) 3, which might otherwise be suggested from the magnitude 
of the terms neglected in [36], arises from the fact that Faxen's law [18] is only correct insofar as the leading-order 
contribution to the force is concerned. 
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together with the comparable pressure field pW, explicit knowledge of which will not be required. 
Evaluation of [58] at r = b followed by use of the generic formula [18] yields, upon integration over 
the unit sphere surface, 

[ o( )1 FW 9b /~KF 1+ [59] 
4 ro I~o ~o " 

The wall correction F -wP due to all of the suspended spheres, randomly distributed within the 
spherical enclosure, may be similarly obtained. As in the preceding paragraph, in order to obtain 
the reflection of the field ~" (of. [36]) from the wall we seek a solution (~wP, :wP) of Stokes equations 
[1] and [2] satisfying the boundary conditions 

SwP = 0, [60] 

(~wP, fiwP)finite for O<~r<ro [61] 

and 

~b F.(I 3if) at r = r o .  [62] ~wP = _ v"l, =,o ~ 16~l~oro 

Again following Brenner (1981), the solution of this boundary-value problem is 

r 2^^ 

,,,o,, r,}. ,°3, 
Use of [18], with superscript WP written in place of the generic affix.,  gives upon integration 

F-wP- 15b~b8 ro /4~KFI1 + o ( b ) ] "  [64] 

In the preceding calculation leading to [64] we first integrated the velocity disturbance v" over 
all possible positions of the centers of the suspected spheres (to obtain ~") and then corrected for 
the walls to obtain the correction ~va. By direct calculation we have confirmed that [64] is one again 
obtained if, instead, we first consider a single suspended sphere intracting with the wall (to obtain 
F wP) and then integrate the result of that caculation over all possible positions of the center of that 
sphere within the bounded volume 0 <~ r <~ ro (to obtain F-wP). 

Upon substitution into [19], equations [53], [54], [59] and [64] combine to yield 3b, ] 
--= F K 1 - - ~ b  1--~ [65] 

for the apparent force, correct to O(b/ro). Since the total drag force is balanced by the body force 
F = - F  T, this requires that 

+)(,_ l. 
Of the two parenthetical terms in the above equation, the former gives the effect arising from the 
suspended particles, whereas the latter gives the effect of the container geometry. Since the two 
terms are separable, the wall-effect coefficient for the suspension is thus identical to that found for 
a falling ball instantaneously situated at the center of a hollow sphere (radius ro) filled with a 
homogeneous Newtonian liquid of viscosity p (Happel & Brenner 1983) (as may also be seen by 
setting q~ = 0 in [15], whence #/#0 = 1). Hence, from [66], the wall correction to Stokes law (using, 
of course, the appropriate viscosity in Stokes law, namely/.to for the homogeneous fluid and/~ for 
the suspension) retains the same form for the suspension as it does for the homogeneous fluid. 

5. STOKES-LAW RELATIVE SLIP VELOCITY AT THE SUSPENSION SCALE? 

Despite the large body of existing literature giving alternative derivations of Einstein's viscosity 
law [15], we nevertheless believe that our analysis introduces several novel features not heretofore 
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addressed in rheological issues pertaining to the viscosity of suspensions. Among other things, our 
analysis appears to demonstrate (but see the discussion at the end of section 6) that Stokes law 
without slip applies on the suspension scale to the mean velocity of a ball settling through a (dilute) 
suspension; this conclusion is independent of the size of the settling ball in relation to either the 
sizes of the suspended spheres or the mean distance between them. This lack of suspension-scale 
slip at the surface of the falling ball is explictly demonstrated by the fact that Stokes law applies 
in the classical form 

F = 6nl~bU, [67] 

in which/~ is given by Einstein's suspension viscosity formula [15]. Equation [67] corresponds to 
a no-slip condition in the sense that the 6rt coefficient is valid only for the no-slip case. Were slip 
to occur (cf. Happel & Brenner 1983; O'Neill et al., 1986) the coefficient of [67] would be 
diminished--becoming, for example, 4n in the case of perfect slip (Happel & Brenner 1983). 

This no-slip conclusion seems very surprising. One would have thought, expecially in the case 
where the settling sphere is small compared with the size of the suspended spheres and the mean 
distance between them, that "Knudsen-type" effects would be manifest, leading to an effective 
slipping motion (cf. O'Neill et al., 1986) at the surface of the settling sphere when viewing its motion 
on the suspension scale; i.e. given the mean-free-path limitation implicit in the continuum 
hypothesis for a suspension, it seems surprising to learn by direct calculation that Stokes law, sans 
slip, applies as in [67]. While this implicit, no-slip, Stokes-law-type behavior has been experimen- 
tally demonstrated heretofore (Mondy et al., 1986) in nondilute suspensions and for relatively large 
falling-ball sizes (in relation to the suspended sphere sizes), these data do not seriously penetrate 
into the range where Knudsen-type issues would come to the fore. 

6. SUMMARY AND DISCUSSION 

An expression has been derived for the effective viscosity of a dilute, quiescent suspension of 
neutrally buoyant spheres by two independent, but closely related methods: (i) by calculating the 
suspension-scale Stokeslet velocity and pressure fields arising from a steady point force F acting 
as a fixed interstitial fluid point of the suspension, and subsequently comparing these fields with 
those arising in a hypothetical homogeneous Newtonain fluid continuum of viscosity/~ given by 
[15]; and (ii) by calculating the retardation in the mean Stokes-law settling velocity of a ball falling 
through the suspension under the action of a net gravity force F, as compared with the mean 
velocity achieved by the ball when settling through the particle-free homogeneous fluid of viscosity 
/%. Wall effects were included in the latter calculation. 

Einstein's (1906, 1911) classic result,/a = I%(1 + ~b), for the suspension viscosity was reaffirmed 
in both cases. Morever, the suspension viscosity result was shown to be independent of the relative 
radii of the settling to suspended spheres (even when the sedimenting sphere is smaller than the 
suspended spheres), as well as of the degree of polydispersity of the suspended spheres. 

Had the rheological calculation been approached instead as a mean field theory, the effective 
viscosity needed to make the pressure integral convergent would again be Einstein's result, as is 
assumed in Hinch's (1977) renormalization. Had Hinch's renormalization been used in section 4 
(where renormalization was unnecessary since only velocity information was needed to calculate 
the wall corrections), our results would then have followed trivially from [47] upon replacing the 
fluid viscosity with the hypothetical homogeneous suspension viscosity. 

The falling-ball wall correction to Stokes law obtained in section 4 for a dilute suspension 
bounded within a concentric hollow sphere was found to be identical to that for a homogeneous 
Newtonian liquid. These results strongly suggest that well-known (Happel & Brenner 1983) 
homogeneous Newtonain fluid wall corrections for other bounding geometries could equally well 
be applied to suspensions. In particular, one may apparently determine the viscosity of a suspension 
from falling-ball rheometry data (taken in circular cylinders) by assuming (a priori) that the classical 
Newtonian, cylindrical wall corrections to Stokes law also apply to suspensions. 

Our analysis apparently demonstrates that Stokes law, without slip, applies on the suspension 
scale to the mean velocity of a sphere settling through a dilute suspension; this conclusion is 
independent of the size of the sedimenting sphere in relation to either the sizes of the suspended 
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spheres or the mean distance between them. However, this conclusion cannot strictly be claimed 
as being unequivocal in the absence of detailed calculations that include the higher-order terms 
neglected in our analysis. In particular, in [13] variations in velocity across the sphere beyond the 
linear gradient are neglected. Moreover, in applying Faxen's laws ([17] or [18]), third- and 
higher-order reflections have been neglected. Both of these approximations can obviously be 
justified asymptotically when the falling ball is large compared with the suspended spheres, namely 
b/c >> 1. Consequently, the criterion constitutes a sufficient condition for the applicability of our 
analysis. Whether however, this inequality is also a necessary condition awaits a more detailed 
analysis. Existing experimental data (Mondy et al. 1986; Milliken et al. 1989), albeit obtained in 
much more concentrated systems than would be expected to lie within the purview of our dilute 
suspension analysis, appear to support the contention that the analysis applies at least in 
circumstances for which b/c = O(1), if not b/c<< 1. In particular, at ~b = 0.25 the Stokes law 
suspension viscosity data (Milliken et al., 1989) are independent of the ratio b/c in the range 
0.25 ~< b/c <~ 6.0 of size ratios measured. 

Irrespective of the resolution of the "slip" issue of the preceding paragraph, our analysis appears 
to be the first whereby Einstein's suspension-viscosity formula [15] has been derived from a 
particulate point of view by solving a nontrivial flow problem. Whereas Einstein's formula has 
always been derived heretofore by considering a macroscopically homogeneous linear shearing field 
as the underlying generator of the perturbed flow (the perturbation being caused by the presence 
of the suspended spheres), such is not the case here. Rather, in our analysis the Stokeslet field [10] 
is the generator, for which the basic flow field is intrinsically inhomogeneous. 

Finally, we point out that our analysis depends neither on the concept of a (homogeneous) 
suspension-scale shear field nor stress tensor, concepts which permeate prior suspension-viscosity 
analyses. Indeed, foregoing completely the question of the range of applicability of our subsequent 
falling-ball analysis (and concomitant wall effects), our fundamental Stokeslet derivation (cf. [14] 
and [48a,b]) of the Einstein relation [15] eschews the use of these suspension-scale concepts. 
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A P P E N D I X  

Integrat ion o f  [34] 

The integral [34] for the cumulative addition to the velocity field arising from the suspended 
spheres possesses no singularities and decays like R-4 as R ~ ~ .  Hence the integration can be 



FALLING-BALL RHEOMETRY IN DILUTE SUSPENSIONS 595 

effected directly without renormalization, either by integrating about the singularity with O as the 
origin or else about the point P as shown in figure 2. In either case, r is to be held constant during 
the integration. As our goal is to calculate the wall effect for a spherical shell concentric with the 
settling sphere, the integration will be performed about O. Upon writing d3R = R 2 dR d2~ for the 
volume element, [34] may be written as 

~,,_ 15~ f 87z q-3q~:qilR2 dR d2fi' [A.I] 

in which d21~ denotes an element of surface area on a unit sphere centered at O in figure 2. 
To perform the above integration it is convenient to transform the integrand into an expression 

containing only the variables R and r, by eliminating the variable q. An elegant way of effecting 
this transformation involves use of the identity 

qZ~q3 = l ~ ' I V l + ~ f ( q ) ]  +VV~} " q  3[ Lq [A.2] 

In view of the further identity I: ~R - V" v = 0, only the VVq - t term in [A.2] survives in the integrand 
of [A.1]. Upon substituting [29] into [A.I] and utilizing the identities I : V V = W  and 
1/1~: VV = &E/&R 2, we obtain 

64rd#~ ° F" jLR= \3 q aR 2 R 2 dR d21~. [A.3] 
However, W q - t =  -4n(q).  Given that q = r -  R, it readily follows that in [A.3] 

fl~.q d3R___~ f (q) d3q ~-~ 6 (q) q6 = 0 [A.41 

since, given the basic properties of the delta function, the latter integral is merely the value of q 
evaluated at q = 0. Hence, [A.3] reduces to 

647z2#-- ~ JLR2 t3R2\qj jR 2dR d2R. [A.5] 

As is well-known in potential theory (MacRobert 1967), 1/q possesses the spherical harmonic 
expansion 

1 =1 £ H,(s)P,(f'R), tA.6] 
q r .=o 

wherein, with 
s = R/r, [A.7] 

S n 

n . ( s )  = 
S -(n + I) 

Additionally, P,(~.II) is the Legendre function 
Introduction of [A.6] into [A.5] yields 

~ , ,  = _ _  

for Is l<  1, 
[A.81 

for I s l>  1. 

of order n and argument ~ 'R-cos ( f ,R) .  

150 
64n 2#0r F" (A~ - B), [A.9] 

with the respective vector and dyadic fields A(ro/r, f) and B(ro/r, ~) defined as 

A = G,(s) as (IP,(i.fi) d2(I 
n = O  3 s = O  I 

and 

 fro 
B = G.(s)s ds RRP.(~'R) d2(i, 

n = O  d s = O  1 

in which 
dZH, r2 021-1, 

G,(s) =--~-s2 = t~R z • 

[A. l 0] 

[A.1 l] 

[A.121 
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We have inserted an upper limit of ro/r rather than ~ in the s integration so as to permit us 
subsequently to employ the same scheme to treat the bounded suspension case for a spherical 
boundary of radius to. 

In terms of the tensor surface spherical harmonics of polyadic rank k (Brenner 1964b), defined 
a s  

( - l )  k k+ 1 (k = 0,1, 2, . .), [A.13] Pk (P,) = ~ r ' (V) k ~ ,  

we have the identities 

and 

= P, (~,) [A. 141 

~ = ~I~'o(~) + ]p~(~), [A. 15] 

where Po -= I. Use of these identities together with the orthogonality relationship (Brenner 1964b) 

, Pk (~-)P,(r" ~) d2P-, = 6k. ~ P.  (~) [A. 161 

(with 6k, the Kronecker delta) permits ready evaluation of the A and B integrals. In particular, 

= iS I r°/r A ~ P, P,,(~' O.,) d21~ G,(s)ds [A.17] 
n=O t ds~O 

_4Ztp f,o/, GI (s) ds [A. 18] 
---'3 I ds=O 

4re F (" d2s - Iro/r d2 1 
=-Y~LJo ~:ds o, ~Ss2(S-2)ds [A.19] 

Similarly, 

+ - I  Po(R)P,,(~'R) dZR G,,(s)s ds [A.21] B =  3 P~(P')P"(~'P')d~f~ 3 jj~=0 
I I 

-~8 fro/, 
r t  . 4n ^ ~ r°/r 

= P2(r) G2(s)s ds +-~IPo(r ) l Go(s)s ds [A.22] 
=0 ds 0 

= ~ rztr)[J  ° ~sj (s2)s ds + ~s2 (s-3)s ds 

+4"i/f' d 2 f,,,, d 2 
3 I_J0 ~Ss2(1)sds+jt "~s2(S-')sds [A.231 

4n [ 4 ( r y 1  + 8_~ i ( 1 -  r )  [A.24] 
= ~ ( 3 ~ - I )  1 + 4 -  \rJ_l 3 \ 70 

= 4 n " [ l -  4-(--ryl + - ~ I [ I - 2  r . [A.25] 5kro] _ ] (-~o) -[-4(r~315 kro/ A 

Substituting [A.20] and [A.25] into [A.9] for the cumulative contribution of the suspended spheres 
to the velocity field thereby gives the result cited in [36]. 


